Vector Spaces

Jan Schneider
McCombs School of Business
University of Texas at Austin

Vectors

\mathbb{R} : set of real numbers (scalars).
\mathbb{R}^{n} : set of all vectors

$$
\mathbf{x}=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right), \quad x_{i} \in \mathbb{R}
$$

$X \subseteq \mathbb{R}^{n}$ is a vector space or linear space if for any $\mathbf{x}, \mathbf{y} \in X$ and $c \in \mathbb{R}$:

$$
\mathbf{x}+\mathbf{y} \in X \quad \text { and } c \mathbf{x} \in X
$$

Y is a subspace of $X(Y \subseteq X)$ if Y is a vector space and if every element of Y is also in X.

Inner Product

Let $X \subseteq \mathbb{R}^{n}$ be a vector space.
An inner product is a function $f(\mathbf{x}, \mathbf{y}): X^{2} \rightarrow \mathbb{R}$, such that for any $\mathbf{x}, \mathbf{y}, \mathbf{z} \in X$ and $a, b \in \mathbb{R}$:
(1) $f(\mathbf{x}, \mathbf{y})=f(\mathbf{y}, \mathbf{x})$
(2) $f(\mathbf{x},(a \mathbf{y}+b \mathbf{z}))=a f(\mathbf{x}, \mathbf{y})+b f(\mathbf{x}, \mathbf{z})$
(3) $\mathbf{x} \neq 0 \Rightarrow f(\mathbf{x}, \mathbf{x})>0$

Example:

$$
f(\mathbf{x}, \mathbf{y})=\mathbf{x} \cdot \mathbf{y}=\sum_{i=1}^{n} x_{i} y_{i}
$$

is called the Euclidian product.

Linear Combinations

If $c_{i}, \ldots, c_{k} \in \mathbb{R}$, and $\mathbf{x}_{1}, \ldots, \mathbf{x}_{k} \in \mathbb{R}^{n}$ then
$\mathbf{A c}=\left(\begin{array}{ccc}x_{11} & \cdots & x_{1 k} \\ \vdots & & \vdots \\ x_{n 1} & \cdots & x_{n k}\end{array}\right)\left(\begin{array}{c}c_{1} \\ \vdots \\ c_{k}\end{array}\right)=c_{1}\left(\begin{array}{c}x_{11} \\ \vdots \\ x_{n 1}\end{array}\right)+\cdots+c_{k}\left(\begin{array}{c}x_{1 k} \\ \vdots \\ x_{n k}\end{array}\right)=\sum_{i=1}^{k} c_{i} \mathbf{x}_{i}$
is a linear combination.

Matrix Multiplication I

Alternatively, we can also write a linear combination as

$$
\mathbf{A b}=\left(\begin{array}{c}
\mathbf{b y}_{1} \\
\vdots \\
\mathbf{b y}_{n}
\end{array}\right), \quad \text { where } \mathbf{y}_{1} \ldots \mathbf{y}_{n} \text { are the row vectors of } \mathbf{A} .
$$

And accordingly for matrix multiplication:

$$
\mathbf{A B}=\left(\begin{array}{cccc}
\mathbf{b}_{1} \mathbf{y}_{1} & \mathbf{b}_{2} \mathbf{y}_{1} & \cdots & \mathbf{b}_{m} \mathbf{y}_{1} \\
\vdots & \vdots & & \vdots \\
\mathbf{b}_{1} \mathbf{y}_{n} & \mathbf{b}_{2} \mathbf{y}_{n} & \cdots & \mathbf{b}_{m} \mathbf{y}_{n}
\end{array}\right)
$$

Matrix Multiplication II

Let $f(\cdot, \cdot)$ be a weighted Euclidian product:
$f(\mathbf{A}, \mathbf{B})=\left(\begin{array}{cccc}f\left(\mathbf{b}_{1}, \mathbf{y}_{1}\right) & f\left(\mathbf{b}_{2}, \mathbf{y}_{1}\right) & \cdots & f\left(\mathbf{b}_{m}, \mathbf{y}_{1}\right) \\ \vdots & \vdots & & \vdots \\ f\left(\mathbf{b}_{1}, \mathbf{y}_{n}\right) & f\left(\mathbf{b}_{2}, \mathbf{y}_{n}\right) & \cdots & f\left(\mathbf{b}_{m}, \mathbf{y}_{n}\right)\end{array}\right), \quad f\left(\mathbf{b}_{i}, \mathbf{y}_{j}\right)=\sum_{s=1}^{k} c_{s} \mathbf{b}_{i s} \mathbf{y}_{j s}$
Hence the weighted multiplication of matrixes \mathbf{A} and \mathbf{B} is identical to regular multiplication of an adjusted matrix $\tilde{\mathbf{A}}$ with \mathbf{B} :

$$
f(\mathbf{A}, \mathbf{B})=\underbrace{\left(\begin{array}{ccc}
c_{1} a_{11} & \cdots & c_{k} a_{1 k} \\
\vdots & & \vdots \\
c_{1} a_{n 1} & \cdots & c_{k} a_{n k}
\end{array}\right)}_{\tilde{\mathbf{A}}}\left(\begin{array}{ccc}
b_{11} & \cdots & b_{1 m} \\
\vdots & & \vdots \\
b_{k 1} & \cdots & b_{k m}
\end{array}\right)=\tilde{\mathbf{A}} \cdot \mathbf{B}
$$

Linear Systems

A set of equations

$$
\mathbf{A} \mathbf{b}=\mathbf{c} \quad \Longleftrightarrow \quad \sum_{i=1}^{k} b_{i} \mathbf{x}_{i}=\mathbf{c}
$$

is a linear system.
Vectors $\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}$ are linearly independent if

$$
\mathbf{A} \mathbf{b}=\sum_{i} b_{i} \mathbf{x}_{i}=\mathbf{0} \quad \Longrightarrow \quad b_{1}=\cdots=b_{k}=0
$$

Example: does $\mathbf{A}^{T} \mathbf{A}$ consist of independent vectors? We have:

$$
\begin{aligned}
\mathbf{0} & =\mathbf{A}^{T} \mathbf{A} \mathbf{c} \\
\Longrightarrow \quad \mathbf{c}^{T} \mathbf{0} & =\mathbf{c}^{T} \mathbf{A}^{T} \mathbf{A} \mathbf{c}=(\mathbf{A} \mathbf{c})^{T}(\mathbf{A c}) \\
\Longrightarrow \quad \mathbf{A} \mathbf{c} & =\mathbf{0}
\end{aligned}
$$

Basis

- number of independent vectors in matrix \mathbf{A} : rank of \mathbf{A}
- all vectors in A are independent: A has full rank
- if X is the set of all linear combinations of $Y \subset \mathbb{R}^{n}$, then X is the span of $Y(Y$ spans $X)$
- An independent subset of X which spans X is a basis of X
- For \mathbb{R}^{n}, the set of vectors contained in the identity matrix with dimension n is called the standard basis.

Orthogonal Vectors

Consider a vector space X and an inner product $f(\mathbf{x}, \mathbf{y})$.
We say vectors $\mathbf{x}, \mathbf{y} \in X$ are orthogonal $(\mathbf{x} \perp \mathbf{y})$ if $f(\mathbf{x}, \mathbf{y})=0$.
Orthogonal vectors are independent:

$$
\left.\begin{array}{r}
\quad a \mathbf{x}+b \mathbf{y}=0 \\
\mathbf{x y}=0
\end{array}\right\} \quad \Longrightarrow \quad \begin{aligned}
& >0 \text { if } \mathbf{x} \neq 0 \\
& a \mathbf{x}+b \mathbf{x}=0 \\
& a \mathbf{y}+b \mathbf{y}=0 \\
& \vdots
\end{aligned} \quad \Longrightarrow \quad a=b=0
$$

Orthogonal complement to Y :

$$
Y_{\perp}=\{\mathbf{x} \in X: f(\mathbf{x}, \mathbf{y})=0 \text { for all } \mathbf{y} \in Y\}
$$

Orthogonal Projection: 2 Dimensions

Orthogonal Projection: 2 Dimensions

Define

$$
\mathbf{z}=\underset{\text { green vector }}{\mathbf{x}-b \mathbf{y}}
$$

Since \mathbf{z} and \mathbf{y} are orthogonal:

$$
\mathbf{z y}=(\mathbf{x}-b \mathbf{y}) \mathbf{y}=0 \quad \Longleftrightarrow \quad b=\frac{\mathbf{x y}}{\mathbf{y} \mathbf{y}}
$$

and

$$
\begin{aligned}
& \stackrel{\mathbf{x}}{\mathbf{u}}=b \mathbf{y}+\underset{\mathbf{U}}{\mathbf{Z}} \\
& \in \underset{X}{\in} \\
& \in Y_{\perp}
\end{aligned}
$$

We can generalize the concept of orthogonal projection to an arbitrary inner product:

$$
f(\mathbf{x}-b \mathbf{y}, \mathbf{y})=0 \quad \Longleftrightarrow \quad b=\frac{f(\mathbf{x}, \mathbf{y})}{f(\mathbf{y}, \mathbf{y})}
$$

Orthogonal Projection: n Dimensions

Let $X \subseteq \mathbb{R}^{n}$ be a vector space and Y be a subspace of X.
Let \mathbf{A} be an $n \times m$ matrix whose m column vectors form a basis for Y.

For any $\mathbf{x} \in X$ define

Orthogonal Projection: n Dimensions

Then

$$
\mathbf{x}=\mathbf{A} \mathbf{b}+\mathbf{z}
$$

and

$$
\mathbf{A}^{T} \mathbf{x}=\mathbf{A}^{\mathbf{A}^{T} \mathbf{A}\left(\mathbf{A}^{T} \mathbf{A}\right)^{-1} \mathbf{A}^{T} \mathbf{x}}+\mathbf{A}^{T} \mathbf{z} \quad \Longrightarrow \quad \mathbf{A}^{T} \mathbf{z}=0
$$

Hence

$$
\in \stackrel{\underset{X}{x}=\underset{\in Y}{\mathbf{x}} \underset{\in}{\mathbf{A}}+\underset{Y_{\perp}}{\mathbf{z}}}{ }
$$

Orthogonal Projection: Weighted Euclidian Product I

Define:

$$
\mathbf{b}=f\left(\mathbf{A}^{T}, \mathbf{A}\right)^{-1} \prod_{\text {regular product }} f\left(\mathbf{A}^{T}, \mathbf{x}\right), \quad \mathbf{z}=\mathbf{x}-\mathbf{A} \cdot \mathbf{b}
$$

where:

$$
\begin{aligned}
f(\mathbf{A}, \mathbf{B})= & \underset{\text { A. }}{\tilde{\mathbf{A}} \cdot \mathbf{B}} \\
& \text { matrix } \mathbf{A} \text { adjusted by weights } c_{i}
\end{aligned}
$$

Hence:

$$
\begin{aligned}
f\left(\mathbf{A}^{T}, \mathbf{A} \cdot f\left(\mathbf{A}^{T}, \mathbf{A}\right)^{-1} \cdot f\left(\mathbf{A}^{T}, \mathbf{x}\right)\right)= & \tilde{\mathbf{A}^{T} \cdot\left(\mathbf{A} \cdot f\left(\mathbf{A}^{T}, \mathbf{A}\right)^{-1} \cdot f\left(\mathbf{A}^{T}, \mathbf{x}\right)\right)} \\
= & \left(\tilde{\left.\mathbf{A}^{T} \cdot \mathbf{A}\right) \cdot f\left(\mathbf{A}^{T}, \mathbf{A}\right)^{-1} \cdot f\left(\mathbf{A}^{T}, \mathbf{x}\right)}\right. \\
& \frac{f\left(\mathbf{A}^{T}, \mathbf{A}\right)}{f\left(\mathbf{A}^{T}, \mathbf{x}\right)}
\end{aligned}
$$

Orthogonal Projection: Weighted Euclidian Product II

Hence

$$
f\left(\mathbf{A}^{T}, \mathbf{x}\right)=f\left(\mathbf{A}^{T}, \mathbf{A} \cdot f\left(\mathbf{A}^{T}, \mathbf{A}\right)^{-1} \cdot f\left(\mathbf{A}^{T}, \mathbf{x}\right)\right)+f\left(\mathbf{A}^{T}, \mathbf{z}\right) \Longrightarrow f\left(\mathbf{A}^{T}, \mathbf{z}\right)=0
$$

Hence we can decompose vector \mathbf{x} as
$\in \stackrel{\underset{\sim}{X}}{\underset{\sim}{\mathbf{x}}}=\underset{\in Y}{\mathbf{A} \mathbf{b}}+\underset{\sim}{\mathbf{z}} Y_{\perp}$ with respected to the weighted product $f(\mathbf{x}, \mathbf{y})$

