State Prices

Jan Schneider
McCombs School of Business
University of Texas at Austin

Definition of State Prices

- intuition for state prices: how much does it cost to receive a payoff of 1 at some future q_{t} ?
- For each local market q_{t} choose a vector of real numbers

$$
\pi_{q_{t+1}}\left(q_{t}\right)=\left(\begin{array}{c}
\pi_{q_{1 t+1}}\left(q_{t}\right) \\
\vdots \\
\\
\pi_{q_{m t+1}}\left(q_{t}\right)
\end{array}\right)
$$

- We call the elements of $\pi_{q_{t+1}}\left(q_{t}\right)$ state prices if

$$
\underbrace{\mathbf{P}_{t}\left(q_{t}\right)}_{\text {asset }}=\underbrace{\left(\mathbf{P}_{t+1}^{*}\left(q_{t+1}\right)\right)^{T}}_{\text {prices }} \underbrace{\boldsymbol{\pi}_{q_{t+1}}\left(q_{t}\right)}_{\text {stayoffs }}
$$

Longterm State Prices

- we define the long-term state prices as

$$
\pi_{q_{t+\tau}}\left(q_{t}\right)=\pi_{q_{t+1}}\left(q_{t}\right) \times \pi_{q_{t+2}}\left(q_{t+1}\right) \times \cdots \times \pi_{q_{t+\tau}}\left(q_{t+\tau-1}\right)
$$

Longterm Discounting with State Prices I

$$
\begin{aligned}
& \sum_{q_{t+2} \subseteq q_{t+1}} \pi_{q_{t+2}}\left(q_{t+1}\right) \times\left[P_{\mathrm{a}}\left(q_{t+2}\right)+D_{\mathrm{a}}\left(q_{t+2}\right)\right] \\
& P_{\mathrm{a}}\left(q_{t}\right)= \sum_{q_{t+1} \subseteq q_{t}} \pi_{q_{t+1}}\left(q_{t}\right) \times\left[P_{\mathrm{a}}\left(q_{t+1}\right)+D_{\mathrm{a}}\left(q_{t+1}\right)\right] \\
&=\sum_{q_{t+1} \subseteq q_{t}} \pi_{q_{t+1}}\left(q_{t}\right) D_{\mathrm{a}}\left(q_{t+1}\right) \\
&+\sum_{\sum_{q_{t+1} \subseteq q_{t}} \pi_{q_{t+1}}\left(q_{t}\right) \sum_{q_{t+2} \subseteq q_{t+1}} \pi_{q_{t+2}}\left(q_{t+1}\right) \times\left[P_{\mathrm{a}}\left(q_{t+2}\right)+D_{\mathrm{a}}\left(q_{t+2}\right)\right]}^{\sum_{q_{t+1} \subseteq q_{t}} \sum_{q_{t+2} \subseteq q_{t+1}} \pi_{q_{t+1}\left(q_{t}\right) \pi_{q_{t+2}}\left(q_{t+1}\right)}^{\pi_{q_{t+2}}\left(q_{t}\right)}} \\
&
\end{aligned}
$$

Longterm Discounting with State Prices II

- if we continue to solve this equation forward:
$P_{a}\left(q_{t}\right)=\sum_{j=1}^{\tau-1} \sum_{q_{t+j} \subseteq q_{t}} \pi_{q_{t+j}}\left(q_{t}\right) D_{a}\left(q_{t+j}\right)+\sum_{q_{t+\tau} \subseteq q_{t}} \pi_{q_{t+\tau}}\left(q_{t}\right)\left[P_{a}\left(q_{t+\tau}\right)+D_{a}\left(q_{t+\tau}\right)\right]$

State Prices and Portfolios

$$
\begin{aligned}
& \text { - we have } \sum_{q_{t+1} \subseteq q_{t}} \pi_{q_{t+1}}\left(q_{t}\right) \times\left[P_{a}\left(q_{t+1}\right)+D_{a}\left(q_{t+1}\right)\right] \\
& P_{H}\left(q_{t}\right)=\sum_{a} H_{a}\left(q_{t}\right) P_{a}\left(q_{t}\right) \\
& =\sum_{q_{t+1} \subseteq q_{t}} \pi_{q_{t+1}}\left(q_{t}\right)\left(\sum_{a} H_{a}\left(q_{t}\right) \times\left[P_{a}\left(q_{t+1}\right)+D_{a}\left(q_{t+1}\right)\right]\right) \\
& D_{H}\left(q_{t+1}\right)+P_{H}\left(q_{t+1}\right)
\end{aligned}
$$

- hence:
$P_{H}\left(q_{t}\right)=\sum_{j=1}^{\tau-1} \sum_{q_{t+j} \subseteq q_{t}} \pi_{q_{t+j}}\left(q_{t}\right) D_{H}\left(q_{t+j}\right)+\sum_{q_{t+\tau} \subset q_{t}} \pi_{q_{t+\tau}}\left(q_{t}\right)\left[P_{H}\left(q_{t+\tau}\right)+D_{H}\left(q_{t+\tau}\right)\right]$

State Prices and Risk Free Rates

$$
P_{f}^{t+\tau}\left(q_{t}\right)=\sum_{q_{t+\tau} \subseteq q_{t}} \pi_{q_{t+\tau}}\left(q_{t}\right) \quad \Longleftrightarrow \quad R_{f}^{t+\tau}\left(q_{t}\right)=\frac{1}{\sum_{q_{t+\tau} \subseteq q_{t}} \pi_{q_{t+\tau}}\left(q_{t}\right)}
$$

Law of One Price \Longrightarrow State Prices Exist

- complete market

$$
\mathbf{P}_{t}=\left(\mathbf{P}_{t+1}^{*}\right)^{T} \underbrace{\left(\left(\mathbf{P}_{t+1}^{*}\right)^{T}\right)^{-1} \mathbf{P}_{t}}_{\mathbf{P}_{q t+1}\left(q_{t}\right)=} \text { prices of state assets }
$$

- in general, law of one price:

$$
\mathbf{P}_{t}=\left(\mathbf{P}_{t+1}^{*}\right)^{T} \mathbf{P}_{t+1}^{*}\left(\left(\mathbf{P}_{t+1}^{*}\right)^{T} \mathbf{P}_{t+1}^{*}\right)^{-1} \mathbf{P}_{t}
$$

- Hence

$$
\boldsymbol{\pi}=\mathbf{P}_{t+1}^{*}\left(\left(\mathbf{P}_{t+1}^{*}\right)^{T} \mathbf{P}_{t+1}^{*}\right)^{-1} \mathbf{P}_{t}
$$

is a state-price vector.

Interpretation of State-Price Vector I

- orthogonal projection:

Interpretation of State-Price Vector II

- Accordingly:
traded payoffs closest to state assets
$\left(\begin{array}{cccc}1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1\end{array}\right)=\mathbf{P}_{t+1}^{*}\left(\left(\mathbf{P}_{t+1}^{*}\right)^{T} \mathbf{P}_{t+1}^{*}\right)^{-1}\left(\mathbf{P}_{t+1}^{*}\right)^{T}\left(\begin{array}{cccc}1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1\end{array}\right)+\left(\mathbf{z}_{1} \ldots \mathbf{z}_{m}\right)$

Interpretation of State-Price Vector III

- Prices of portfolios whose payoffs are closest to state assets:

$$
\frac{\left(\mathbf{H}_{1} \ldots \mathbf{H}_{m}\right)^{T} \mathbf{P}_{t}=\mathbf{P}_{t+1}^{*}\left(\left(\mathbf{P}_{t+1}^{*}\right)^{T} \mathbf{P}_{t+1}^{*}\right)^{-1} \mathbf{P}_{t}}{m \times A}
$$

Complete Market \Longleftrightarrow Unique State Prices

- Let $\boldsymbol{\pi}$ be a state-price vector
- Suppose $\mathbf{z}_{P_{\perp}^{*}} \in$ (payoff space) $)_{\perp}$
- then:

$$
\left(\mathbf{P}_{t+1}^{*}\right)^{T}\left(\boldsymbol{\pi}+\mathbf{z}_{P_{\perp}^{*}}\right)=\left(\mathbf{P}_{t+1}^{*}\right)^{T} \boldsymbol{\pi}+\underbrace{\left(\mathbf{P}_{t+1}^{*}\right)^{T} \mathbf{z}_{P_{\perp}^{*}}}_{=0}=\mathbf{P}_{t}
$$

- Hence:
$\boldsymbol{\pi}$ is a stare-price vector

$$
\begin{gathered}
\Longleftrightarrow \quad(\boldsymbol{\pi}+\mathbf{z}) \text { is a state-price vector } \\
\in(\text { payoff space })_{\perp}
\end{gathered}
$$

- Hence:
market complete

state prices are unique

There is Only One Traded State Price Vector

- Suppose there are two traded state price vectors π_{1} and π_{2} :
price of $\mathbf{x}=\mathbf{x} \boldsymbol{\pi}_{1}=\mathbf{x} \boldsymbol{\pi}_{2}$

$$
\begin{aligned}
& \Longrightarrow \quad 0=\mathbf{x}\left(\pi_{1}-\pi_{2}\right) \\
& \Longrightarrow \quad 0=\left(\pi_{1}-\pi_{2}\right)\left(\pi_{1}-\pi_{2}\right) \quad \longleftarrow \text { since } \pi_{1}-\pi_{2} \text { is also traded } \\
& \Longrightarrow \quad 0=\pi_{1}-\pi_{2} \\
& \longleftarrow \text { for any traded payoff } \mathrm{x} \\
& \longleftarrow \text { since } \pi_{1}-\pi_{2} \text { is also traded }
\end{aligned}
$$

- hence we can write every state price vector as:

$$
\boldsymbol{\pi}=\mathbf{P}_{t+1}^{*}\left(\left(\mathbf{P}_{t+1}^{*}\right)^{T} \mathbf{P}_{t+1}^{*}\right)^{-1} \mathbf{P}_{t}+\mathbf{z}
$$

unique traded state price vector \in (payoff space) \perp

Non-Traded Payoffs Do Not Have a Unique Price

- We can decompose payoff \mathbf{x} :

$$
\mathbf{x}=\mathbf{x}_{\mathbf{P}^{*}}+\mathbf{x}_{\mathbf{P}_{\perp}^{*}}^{*}
$$

- We can decompose payoff state-price vector $\boldsymbol{\pi}$:

$$
\boldsymbol{\pi}=\pi_{\mathbf{P}^{*}}+\pi_{\mathbf{P}_{\perp}^{*}}^{*}
$$

- Hence:

$$
\text { price of } \mathbf{x}=\mathbf{x}\left(\boldsymbol{\pi}_{\mathbf{P}^{*}}+\boldsymbol{\pi}_{\mathbf{P}_{\perp}^{*}}\right)=\mathbf{x}_{\mathbf{P}^{*}} \boldsymbol{\pi}_{\mathbf{P}^{*}}+\mathbf{x}_{\mathbf{P}_{\perp}^{*}} \boldsymbol{\pi}_{\mathbf{P}_{\perp}^{*}}+\mathbf{x}_{\mathbf{P}^{*}} \boldsymbol{\pi}_{\mathbf{P}_{\perp}^{*}}+\boldsymbol{\pi}_{\mathbf{P}^{*}} \mathbf{x}_{\mathbf{P}_{\perp}^{*}}
$$

- Suppose we choose $\boldsymbol{\pi}_{\mathbf{P}_{\perp}^{*}}=k \mathbf{x}_{\mathbf{P}_{\perp}^{*}}$. Then

$$
\text { price of } \mathbf{x}=\mathbf{x}_{\mathbf{P}^{*}} \boldsymbol{\pi}_{\mathbf{P}^{*}}+k \mathbf{x}_{\mathbf{P}_{\perp}^{*}}^{2} .
$$

- Hence
$\mathbf{x} \in$ payoff space
price of \mathbf{x} is constant across all state prices

