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Definition of State Prices

intuition for state prices: how much does it cost to receive a

payoff of 1 at some future qt?

For each local market qt choose a vector of real numbers

πqt+1(qt) =


πq1t+1(qt)

...

πqmt+1(qt)


We call the elements of πqt+1(qt) state prices if

Pt(qt)

asset prices

= (P∗t+1(qt+1)

payoffs

)T πqt+1(qt)

state prices
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Longterm State Prices

we define the long-term state prices as

πqt+τ (qt) = πqt+1(qt)× πqt+2(qt+1)× · · · × πqt+τ (qt+τ−1)
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Longterm Discounting with State Prices I

Pa(qt) =
∑

qt+1⊂qt
πqt+1(qt)× [

∑
qt+2⊆qt+1

πqt+2(qt+1)× [Pa(qt+2) + Da(qt+2)]

Pa(qt+1) +Da(qt+1)]

=
∑

qt+1⊆qt

πqt+1(qt)Da(qt+1)

+
∑

qt+1⊆qt

πqt+1(qt)
∑

qt+2⊆qt+1

πqt+2(qt+1)

∑
qt+1⊂qt

∑
qt+2⊆qt+1

πqt+1(qt)πqt+2(qt+1)

πqt+2(qt)

∑
qt+2⊂qt

πqt+2(qt)

×[Pa(qt+2) + Da(qt+2)]
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Longterm Discounting with State Prices II

if we continue to solve this equation forward:

Pa(qt) =
τ−1∑
j=1

∑
qt+j⊆qt

πqt+j (qt)Da(qt+j)+
∑

qt+τ⊆qt

πqt+τ (qt)[Pa(qt+τ )+Da(qt+τ )]
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State Prices and Portfolios

we have

PH(qt) =
∑
a

Ha(qt)

∑
qt+1⊆qt

πqt+1(qt)× [Pa(qt+1) + Da(qt+1)]

Pa(qt)

=
∑

qt+1⊆qt

πqt+1(qt)

(∑
a

Ha(qt)× [Pa(qt+1) + Da(qt+1)]

)

DH(qt+1) + PH(qt+1)

hence:

PH(qt) =
τ−1∑
j=1

∑
qt+j⊆qt

πqt+j (qt)DH(qt+j)+
∑

qt+τ⊂qt
πqt+τ (qt)[PH(qt+τ )+DH(qt+τ )]
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State Prices and Risk Free Rates

Pt+τ
f (qt) =

∑
qt+τ⊆qt

πqt+τ (qt) ⇐⇒ Rt+τ
f (qt) =

1∑
qt+τ⊆qt πqt+τ (qt)
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Law of One Price =⇒ State Prices Exist

complete market

Pt = (P∗t+1)T ((P∗t+1)T )−1Pt

Pqt+1(qt) = prices of state assets

in general, law of one price:

Pt = (P∗t+1)TP∗t+1

(
(P∗t+1)TP∗t+1

)−1
Pt

Hence

π = P∗t+1

(
(P∗t+1)TP∗t+1

)−1
Pt

is a state-price vector.
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Interpretation of State-Price Vector I

orthogonal projection:

1

0

...

0


= P∗t+1H

(
(P∗t+1)TP∗t+1

)−1
(P∗t+1)T



1

0

...

0



+

∈ (payoff space)⊥

z
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Interpretation of State-Price Vector II

Accordingly:



1 0 · · · 0

0 1 · · · 0

...
...

. . .
...

0 0 · · · 1


=

traded payoffs closest to state assets

P∗
t+1

(
(P∗

t+1)TP∗
t+1

)−1

(P∗
t+1)T



1 0 · · · 0

0 1 · · · 0

...
...

. . .
...

0 0 · · · 1


(H1 . . .Hm)

+(z1 . . . zm)
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Interpretation of State-Price Vector III

Prices of portfolios whose payoffs are closest to state assets:

(H1 . . .Hm)T

m×A

Pt

A× 1

= P∗t+1

(
(P∗t+1)TP∗t+1

)−1
Pt
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Complete Market ⇐⇒ Unique State Prices

Let π be a state-price vector

Suppose zP∗⊥ ∈ (payoff space)⊥

then:

(P∗t+1)T
(
π + zP∗⊥

)
= (P∗t+1)Tπ + (P∗t+1)TzP∗⊥

= 0

= Pt

Hence:

π is a stare-price vector ⇐⇒ (π+z

∈ (payoff space)⊥

) is a state-price vector

Hence:

market complete ⇐⇒ state prices are unique

Jan Schneider State Prices 11 / 13



There is Only One Traded State Price Vector

Suppose there are two traded state price vectors π1 and π2:

price of x = xπ1 = xπ2

=⇒ 0 = x(π1 − π2) ←− for any traded payoff x

=⇒ 0 = (π1 − π2)(π1 − π2) ←− since π1 − π2 is also traded

=⇒ 0 = π1 − π2

hence we can write every state price vector as:

π = P∗t+1

(
(P∗t+1)TP∗t+1

)−1
Pt

unique traded state price vector

+ z

∈ (payoff space)⊥
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Non-Traded Payoffs Do Not Have a Unique Price

We can decompose payoff x:

x = xP∗ + xP∗⊥

We can decompose payoff state-price vector π:

π = πP∗ + πP∗⊥

Hence:

price of x = x(πP∗+πP∗⊥
) = xP∗πP∗+xP∗⊥πP∗⊥

+xP∗πP∗⊥
+ πP∗xP∗⊥

= 0

Suppose we choose πP∗⊥
= kxP∗⊥ . Then

price of x = xP∗πP∗ + kx2P∗⊥ .

Hence

x ∈ payoff space ⇐⇒ price of x is constant across all state prices
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