SDF - General Implications for Prices and Returns

Jan Schneider

McCombs School of Business
University of Texas at Austin

Traded Discount Factor

- Project discount factor on the payoff space:

$$
\begin{aligned}
M_{t+1} & =M_{\mathrm{p} t+1}+M_{\mathrm{p}_{\perp} t+1} \\
P_{a t} & =E_{t}\left[M_{t+1}\left(P_{a t+1}+D_{a t+1}\right)\right]=E_{t}\left[M_{\mathrm{p} t+1}\left(P_{a t+1}+D_{a t+1}\right)\right] \\
1 & =\mathrm{E}_{t}\left[M_{\mathrm{p} t+1} R_{t+1}\right]
\end{aligned}
$$

Traded Discount Factor is Unique

- suppose there are two traded discount factors:

$$
\begin{array}{rlrl}
E_{t}\left[M_{\mathrm{p} t+1}\left(P_{a t+1}+D_{a t+1}\right)\right] & =E_{t}\left[\tilde{M}_{\mathrm{p} t+1}\left(P_{a t+1}+D_{a t+1}\right)\right] \\
& \Longrightarrow \quad 0 & =E_{t}\left[\left(M_{\mathrm{p} t+1}-\tilde{M}_{\mathrm{p} t+1}\right)\left(P_{a t+1}+D_{a t+1}\right)\right] \\
& \Longrightarrow \quad 0 & =E_{t}\left[\left(M_{\mathrm{p} t+1}-\tilde{M}_{\mathrm{p} t+1}\right)\left(M_{\mathrm{p} t+1}-\tilde{M}_{\mathrm{p} t+1}\right)\right] \\
& 0 & 0 & =M_{\mathrm{p} t+1}-\tilde{M}_{\mathrm{p} t+1}
\end{array}
$$

Longterm Traded Discount Factor

- longterm compound return:

$$
1=\mathrm{E}_{t}\left[\left(M_{\mathrm{p} t+1} \cdots M_{\mathrm{p} t+\tau-1}\right) R_{t}^{t+\tau}\right]
$$

- longterm payoff space:
(longterm payoff space) $)_{q_{t+}}^{q_{t+}}$
$=\left\{\mathbf{x}: \mathbf{x}=\mathbf{P}_{H}\left(q_{t+\tau}\right)+\mathbf{D}_{H}\left(q_{t+\tau}\right)\right.$ for some self-financing portfolio strategy $\left(\mathbf{H}_{q_{t}} \ldots \mathbf{H}_{q_{t+\tau-1}}\right)$
- projecting $M_{t}^{t+\tau}$ on the corresponding longterm payoff space:

$$
M_{t}^{t+\tau}=M_{\mathrm{p} t}^{t+\tau}+M_{\mathrm{p}_{\perp} t}^{t+\tau} \quad \Longrightarrow \quad 1=\mathrm{E}_{t}\left[M_{t}^{t+\tau} R_{a t}^{t+\tau}\right]=\mathrm{E}_{t}\left[M_{\mathrm{p} t}^{t+\tau} R_{a t}^{t+\tau}\right]
$$

$$
L^{p l}
$$

$t+\tau$ payoff of a portfolio that is self-financing between t and $t+\tau$

Log-Normal Distribution

- Suppose $Y \sim N\left(\mu, \sigma^{2}\right)$. Let $Z=e^{Y}$. Then $\log Z \sim N\left(\mu, \sigma^{2}\right)$. We say Z is log-normally distributed. We have

$$
\begin{aligned}
\mathrm{E}[Z] & =e^{\mu+\frac{\sigma^{2}}{2}} \\
\Longrightarrow \quad \log \mathrm{E}[Z] & =\mathrm{E}[\log Z]+\frac{1}{2} \operatorname{Var}[\log Z]
\end{aligned}
$$

Risk-Free Rate I

- short-term risk-free asset:

$$
P_{f t}=\mathrm{E}_{t}\left[M_{t+1}\right]
$$

$$
\begin{array}{ll}
\Longleftrightarrow & R_{f t+1}=1 / \mathrm{E}_{t}\left[M_{t+1}\right] \\
\Longleftrightarrow & \hat{R}_{f t+1}=-\log \mathrm{E}_{t}\left[M_{t+1}\right]
\end{array}
$$

$$
=-\mathrm{E}_{t}\left[\hat{M}_{t+1}\right]-\frac{\operatorname{Var}_{t}\left[\hat{M}_{t+1}\right]}{2}
$$ for log-normal distribution

Risk-Free Rate II

- long-term risk-free asset:

$$
\begin{aligned}
P_{f t}^{t+\tau}=\mathrm{E}_{t}\left[M_{t}^{t+\tau}\right] \Longleftrightarrow R_{f t}^{t+\tau} & =1 / \mathrm{E}_{t}\left[M_{t}^{t+\tau}\right] \\
\Longleftrightarrow \hat{R}_{f t}^{t+\tau} & =-\log \mathrm{E}_{t}\left[M_{t}^{t+\tau}\right] \\
& =-\sum_{j=1}^{\tau} \mathrm{E}_{t}\left[\hat{M}_{t+j}\right]-\frac{1}{2} \operatorname{Var}_{t}\left[\sum_{j=1}^{\tau} \hat{M}_{t+j}\right] \\
& \frac{\text { for log-normal distribution }}{}
\end{aligned}
$$

Risk-Free Rate III

- Unconditional expectation:
$\underbrace{\mathrm{E}\left[\frac{1}{R_{f t}}\right]=\mathrm{E}\left[P_{f t}\right]=\mathrm{E}\left[M_{t}\right]}_{\text {general case }} \Longleftrightarrow \underbrace{\log \mathrm{E}\left[\frac{1}{R_{f t}}\right]=\log \mathrm{E}\left[M_{t}\right]=\mathrm{E}\left[\hat{M}_{t}\right]+\frac{1}{2} \operatorname{Var}\left[\hat{M}_{t}\right]}_{\text {log-normal distribution }}$

Almost Risk-free Rate

- Projecting 1 on the payoff space from t to $t+\tau$:

$$
1=\underbrace{1_{\mathrm{p} t+\tau}}_{t+\tau}+1_{\mathrm{p}_{\perp} t+\tau} \text { payoff of a portfolio that is self-financing from } t \text { to } t+\tau
$$

- Price:

$$
\begin{aligned}
\mathrm{E}_{t}\left[M_{\mathrm{p} t+1}\right] & =\mathrm{E}_{t}\left[M_{\mathrm{p} t+1} 1\right]=\mathrm{E}_{t}\left[M_{\mathrm{p} t+1} 1_{\mathrm{p} t+1}\right]+\frac{\mathrm{E}_{t}\left[M_{\mathrm{p} t+1} 1_{\mathrm{p}_{\perp} t+1}\right]}{0} \\
P_{1_{\mathrm{p} t+1} t} & =\mathrm{E}_{t}\left[M_{\mathrm{p} t+1} 1_{\mathrm{p} t+1}\right]=\mathrm{E}_{t}\left[M_{\mathrm{p} t+1}\right]
\end{aligned}
$$

- Return:

$$
R_{1_{\mathrm{p}} t+1}=\frac{1_{\mathrm{p} t+1}}{P_{1_{\mathrm{p} t+1} t}}=\frac{1_{\mathrm{p} t+1}}{\mathrm{E}_{t}\left[M_{\mathrm{p} t+1}\right]}=\frac{1}{\underbrace{\mathrm{E}_{t}\left[M_{t+1}\right]}_{\text {if a risk-free asset }}=R_{f t+1}}
$$

Discounting Future Cash Flows I

- We have:

$$
\begin{aligned}
& \mathrm{E}_{t}\left[\left(P_{t+1}+D_{t+1}\right)\right] \mathrm{E}_{t}\left[M_{t+1}\right]+\operatorname{Cov}_{t}\left[\left(P_{t+1}+D_{t+1}\right), M_{t+1}\right] \\
P_{t} & =\mathrm{E}_{t}\left[M_{t+1}\left(P_{t+1}+D_{t+1}\right)\right] \\
\Longrightarrow \quad & P_{t}=\frac{\mathrm{E}_{t}\left[P_{t+1}+D_{t+1}\right]}{\frac{1 / \mathrm{E}_{t}\left[M_{t+1}\right]}{R_{f t+1}(\text { if risk-free asset exists })}+\operatorname{Cov}_{t}\left[M_{t+1}, P_{t+1}+D_{t+1}\right]}
\end{aligned}
$$

- Traded discount factor:

$$
P_{t}=\frac{\mathrm{E}_{t}\left[P_{t+1}+D_{t+1}\right]}{R_{p t+1}}+\operatorname{Cov}_{t}\left[M_{p t+1}, P_{t+1}+D_{t+1}\right]
$$

Discounting Future Cash Flows II

- Interpretation of the decomposition

$$
\begin{aligned}
& \left.P_{t+1}+D_{t+1}=\stackrel{\text { expected payoff }}{\mathrm{E}_{t}\left[P_{t+1}+D_{t+1}\right]}+\xlongequal\left[{\left(\left(P_{t+1}+D_{t+1}\right)-\mathrm{E}_{t}\left[P_{t+1}+D_{t+1}\right]\right.}\right)\right]{\text { unexpected payoff }} \\
& \text { price of expected payoff } \\
& \text { price of unexpected payoff } \\
& P_{t}=\mathrm{E}_{t}\left[M_{t+1} \mathrm{E}_{t}\left[P_{t+1}+D_{t+1}\right]\right]+\mathrm{E}_{t}\left[M_{t+1}\left(\left(P_{t+1}+D_{t+1}\right)-\mathrm{E}_{t}\left[P_{t+1}+D_{t+1}\right]\right)\right] \\
& =\frac{\mathrm{E}_{t}\left[P_{t+1}+D_{t+1}\right]}{\frac{1 / \mathrm{E}_{t}\left[M_{t+1}\right]}{R_{f t+1}(\text { if risk-free asset exists })}}+\operatorname{Cov}_{t}\left[M_{t+1}, P_{t+1}+D_{t+1}\right]
\end{aligned}
$$

Discounting Future Cash Flows III

- discounting future dividends:

$$
\begin{aligned}
& P_{t}= \sum_{j=1}^{\tau} \mathrm{E}_{t}\left[M_{t}^{t+j} D_{t+j}\right]+\mathrm{E}_{t}\left[M_{t}^{t+\tau} P_{t+\tau}\right] \\
& \mathrm{E}_{t}\left[M_{t}^{t+j}\right] \mathrm{E}_{t}\left[D_{t+j}\right] \\
& \frac{\mathrm{E}_{t}\left[D_{t+j}\right]}{R_{f t}^{t+j}} \operatorname{Cov}_{t}\left[M_{t}^{t+j}, D_{t+j}\right] \\
& \text { risk neutral price }
\end{aligned}
$$

- if the discounted price $P_{t+\tau}$ converges to zero:

$$
\frac{P_{t}}{D_{t}}=\sum_{j=1}^{\infty}\left(\frac{\mathrm{E}_{t}\left[G_{D t}^{t+j}\right]}{R_{f t}^{t+j}}+\operatorname{Cov}_{t}\left[M_{t}^{t+j}, G_{D t}^{t+j}\right]\right)
$$

Risk Premium I

- we have for any asset:

$$
1=\underset{\operatorname{E}_{t}\left[M_{t}^{t+\tau} R_{t}^{t+\tau}\right]}{\operatorname{Cov}_{t}\left[M_{t}^{t+\tau}, R_{t}^{t+\tau}\right]+\underset{1 / R_{f t}^{t+\tau}}{\mathrm{E}_{t}\left[M_{t}^{t+\tau}\right]} \text { if risk-free asset exists }}
$$

- linear risk premium

$$
\begin{gathered}
R_{f t}^{t+\tau} \text { if risk-free asset exists } \\
\mathrm{E}_{t}\left[R_{t}^{t+\tau}\right]-\frac{1}{E_{t}\left[M_{t}^{t+\tau}\right]}=-\frac{\operatorname{Cov}_{t}\left[M_{t}^{t+\tau}, R_{t}^{t+\tau}\right]}{E_{t}\left[M_{t}^{t+\tau}\right]}
\end{gathered}
$$

- relative risk premium:

$$
\frac{\mathrm{E}_{t}\left[R_{t}^{t+\tau}\right]}{1 / E_{t}\left[M_{t}^{t+\tau}\right]}-1=-\operatorname{Cov}_{t}\left[M_{t}^{t+\tau}, R_{t}^{t+\tau}\right]
$$

Risk Premium II

- traded discount factor:

Sharpe Ratio

- Sharpe ratio:

$$
\frac{E_{t}\left[R_{t+1}\right]-1 / E_{t}\left[M_{t+1}\right]}{\sqrt{\operatorname{Var}_{t}\left[R_{t+1}\right]}}=-\left(1 / E_{t}\left[M_{t+1}\right]\right) \operatorname{Corr}_{t}\left[M_{t+1}, R_{t+1}\right] \sqrt{\operatorname{Var}_{t}\left[M_{t+1}\right]}
$$

- lower bound for discount factor:

$$
\begin{aligned}
& \frac{\mathrm{E}_{t}\left[R_{t+1}\right]-1 / E_{t}\left[M_{t+1}\right]}{\sqrt{\operatorname{Var}_{t}\left[R_{t+1}\right]}} \leq \frac{\sqrt{\operatorname{Var}_{t}\left[M_{t+1}\right]}}{\mathrm{E}_{t}\left[M_{t+1}\right]} \\
& \Longrightarrow \quad \sqrt{\operatorname{Var}_{t}\left[M_{t+1}\right]} \geq \frac{1}{R_{f t+1}} \frac{\mathrm{E}_{t}\left[R_{t+1}\right]-R_{f t+1}}{\sqrt{\operatorname{Var}_{t}\left[R_{t+1}\right]}}
\end{aligned}
$$

Risk Premium: Lognormal Distribution

- assume $\hat{M}_{t}=\log M_{t}$ and $\hat{R}_{t}=\log R_{t}$ are jointly normally distributed

$$
\begin{aligned}
0=\mathrm{E}_{t}\left[\hat{M}_{t+1}\right]+\mathrm{E}_{t}\left[\hat{R}_{t+1}\right]+\frac{1}{2} & \operatorname{Var}_{t}\left[\hat{M}_{t+1}+\hat{R}_{t+1}\right] \\
& \operatorname{Var}_{t}\left[\hat{M}_{t+1}\right]+\operatorname{Var}_{t}\left[\hat{R}_{t+1}\right]+2 \operatorname{Cov}_{t}\left[\hat{M}_{t+1}, \hat{R}_{t+1}\right]
\end{aligned}
$$

- then:

$$
\left.\frac{\mathrm{E}_{t}\left[\hat{R}_{t+1}\right]+\frac{1}{2} \operatorname{Var}_{t}\left[\hat{R}_{t+1}\right]}{\frac{\log \mathrm{E}_{t}\left[R_{t+1}\right]}{\mathrm{E}_{t}\left[\hat{M}_{t+1}\right]+\frac{1}{2} \operatorname{Var}_{t}\left[\hat{M}_{t+1}\right]}} \underset{\log \mathrm{E}_{t}\left[M_{t+1}\right]}{\log \left(\frac{\mathrm{E}_{t}\left[R_{t+1}\right]}{1 / \mathrm{E}_{t}\left[M_{t+1}\right]}\right)}=-\log \left(\frac{\operatorname{Cov}_{t}\left[\hat{M}_{t+1}, \hat{R}_{t+1}\right]}{R_{f t+1}}\right) \leftarrow \text { if } R_{f t+1}\right] \text { exists }
$$

Unconditional Risk Premium

- Unconditional expectation:

$$
1=\mathrm{E}_{t}\left[M_{t}^{t+\tau} R_{t}^{t+\tau}\right] \quad \Longleftrightarrow \quad 1=\mathrm{E}\left[M_{t}^{t+\tau} R_{t}^{t+\tau}\right]
$$

- Hence:

$$
\begin{aligned}
\mathrm{E}\left[R_{t}^{t+\tau}\right]-\frac{1}{\frac{E\left[M_{t}^{t+\tau}\right]}{1 / \mathrm{E}\left[P_{f t}^{t+\tau}\right]}}=-\frac{\operatorname{Cov}\left[M_{t}^{t+\tau}, R_{t}^{t+\tau}\right]}{\mathrm{E}\left[M_{t}^{t+\tau}\right]} \\
\text { if the risk-free asset exists }
\end{aligned}
$$

- Alternatively:
$0=\mathrm{E}_{t}\left[M_{t}^{t+\tau}\left(R_{t}^{t+\tau}-R_{f t}^{t+\tau}\right)\right] \quad \Longleftrightarrow \quad 0=\mathrm{E}\left[M_{t}^{t+\tau}\left(R_{t}^{t+\tau}-R_{f t}^{t+\tau}\right)\right]$
- Therefore:

$$
\mathrm{E}\left[R_{t}^{t+\tau}-R_{f t}^{t+\tau}\right]=-\frac{\operatorname{Cov}\left[M_{t}^{t+\tau}, R_{t}^{t+\tau}-R_{f t}^{t+\tau}\right]}{\mathrm{E}\left[M_{t}^{t+\tau}\right]}
$$

Unconditional Sharpe Ratio

- Sharpe ratio:

$$
\frac{\mathrm{E}\left[R_{t}\right]-E\left[R_{f t}\right]}{\sqrt{\operatorname{Var}\left[R_{t}\right]}}=-\frac{1}{\mathrm{E}\left[1 / R_{f t}\right]} \operatorname{Corr}\left[M_{t}, R_{t}\right] \sqrt{\operatorname{Var}\left[M_{t}\right]}
$$

- Lower bound is given by:

$$
\sqrt{\operatorname{Var}\left[M_{t}\right]} \geq \mathrm{E}\left[\frac{1}{R_{f t}}\right] \frac{\mathrm{E}\left[R_{t}\right]-\mathrm{E}\left[R_{f t}\right]}{\sqrt{\operatorname{Var}\left[R_{t}\right]}}
$$

- in U.S. data:
market risk premium ≈ 0.08, volatility ≈ 0.2

Inflation

- Adjusting the present value relation for inflation: nominal discount factor $\quad \prod_{\square}^{\text {nominal payoff }}$ real discount factor

$$
P_{t}^{\$}=\mathrm{E}_{t}\left[M_{t+1}^{\$}\left(P_{t+1}^{\$}+D_{t+1}^{\$}\right)\right]=\mathrm{E}_{t}\left[\left(M_{t+1}^{\$} \times \text { inflation }_{t+1}\right) \frac{P_{t+1}^{\$}+D_{t+1}^{\$}}{\text { inflation }_{t+1}}\right]
$$

price in t dollars

- Accordingly for returns:

$$
\begin{gathered}
1=\mathrm{E}_{t}\left[M_{t+1}^{C} R_{t+1}^{C}\right] \\
\text { sumption bundles }
\end{gathered}=\mathrm{E}_{t}[M_{t+1}^{\$} \underbrace{\left.R_{t+1}^{\$}\right]}_{\text {return in dollars }}
$$

return in consumption bundles

Risk-Free Rate and Inflation

- Risk-free rate in real and nominal terms:

$\quad R_{f_{f+1}^{\$}}^{\$}=1 / E_{t}\left[M_{t+1}^{\$}\right]$
nominal return of an asset with
a certain nominal payout

Risk Premium and Inflation

- Risk premium in real and nominal terms:

$$
\begin{gathered}
\mathrm{E}_{t}\left[R_{t+1}^{C}\right]-\frac{\left\ulcorner-\frac{1}{C} C_{t+1}\right.}{\mathrm{E}_{t}\left[M_{t+1}^{C}\right]}
\end{gathered}=-\operatorname{Cov}_{t}\left[M_{t+1}^{C}, R_{t+1}^{C}\right] \frac{1}{\mathrm{E}_{t}\left[M_{t+1}^{C}\right]}
$$

Risk Premium for the Nominal Risk-free Asset

- risk premium for the inflation-adjusted nominal risk-free rate:

$$
\left.\frac{R_{f 5 t+1}^{\S}}{\frac{i^{\S}}{\text { inflition }_{t+1}}} \underset{\mathrm{E}_{t}\left[R_{f^{\S} t+1}^{C}\right.}{C}\right]-\frac{R_{f+1}^{C}}{\mathrm{E}_{t}\left[M_{t+1}^{C}\right]}=-\frac{\operatorname{Cov}_{t}\left[M_{t+1}^{C}, R_{f^{\varsigma} t+1}^{C}\right]}{\mathrm{E}_{t}\left[M_{t+1}^{C}\right]}
$$

- If inflation ${ }_{t+1}$ uncorrelated with the $M_{t+1}^{\$}$ and $R_{f^{\S} t+1}^{\$}$:
$\operatorname{Cov}_{t}\left[M_{t+1}^{C}, R_{f^{\S} t+1}^{C}\right]=\mathrm{E}_{t}\left[\right.$ inflation $\left._{t+1}\right] \times \mathrm{E}_{t}\left[\frac{1}{\text { inflation }_{t+1}}\right] \operatorname{Cov}_{t}\left[M_{t+1}^{\$}, R_{f^{\S} t+1}^{\$}\right]$

