# Mean-Variance Analysis 

Jan Schneider<br>McCombs School of Business<br>University of Texas at Austin

## Beta Representation of the Risk Premium

- risk premium

$$
\begin{aligned}
& \begin{array}{c}
\text { divide by the price of } M_{p t}^{t+\tau} \\
\mathrm{E}_{t}\left[R_{t}^{t+\tau}\right]-
\end{array} R_{1_{p t}^{t+\tau}}=-\frac{\operatorname{Cov}_{t}\left[R_{t}^{t+\tau}, M_{p t}^{t+\tau}\right]}{\mathrm{E}_{t}\left[M_{p t}^{t+\tau}\right]}=-\frac{\operatorname{Cov}_{t}\left[R_{t}^{t+\tau}, R_{M t}^{t+\tau}\right]}{\mathrm{E}_{t}\left[R_{M t}^{t+\tau}\right]} \\
& =R_{f t}^{t+\tau} \text { if a risk-free asset exists }
\end{aligned}
$$

- this equation holds also for the traded discount factor:

$$
\begin{aligned}
\mathrm{E}_{t}\left[R_{M t}^{t+\tau}\right]-R_{1_{p} t}^{t+\tau} & =-\frac{\operatorname{Cov}_{t}\left[R_{M t}^{t+\tau}, R_{M t}^{t+\tau}\right]}{\mathrm{E}_{t}\left[R_{M t}^{t+\tau}\right]} \\
\Rightarrow \quad \mathrm{E}_{t}\left[R_{M t}^{t+\tau}\right] & =-\frac{\operatorname{Var}_{t}\left[R_{M t}^{t+\tau}\right]}{\mathrm{E}_{t}\left[R_{M t}^{t+\tau}\right]-R_{1_{p} t}^{t+\tau}}
\end{aligned}
$$

- plug into equation above:

$$
\mathrm{E}_{t}\left[R_{t+1}\right]-R_{1_{p} t}^{t+\tau}=\frac{\operatorname{Cov}_{t}\left[R_{t+1}, R_{M t}^{t+\tau}\right]}{\operatorname{Var}_{t}\left[R_{M t}^{t+\tau}\right]}\left(\mathrm{E}_{t}\left[R_{M t}^{t+\tau}\right]-R_{1_{p} t}^{t+\tau}\right)
$$

## Unconditional Beta Representation

$$
\begin{gathered}
\mathrm{E}\left[R_{t+1}\right]-\frac{1}{\mathrm{E}\left[1 / R_{1_{p} t}^{t+\tau}\right]}
\end{gathered}=\frac{\operatorname{Cov}\left[R_{t+1}, R_{M t+1}\right]}{\operatorname{Var}\left[R_{M t+1}\right]}\left(\mathrm{E}\left[R_{M t+1}\right]-\frac{1}{\mathrm{E}\left[1 / R_{1_{p t}}^{t+\tau}\right]}\right)
$$

## Maximum Sharpe Ratio

$$
\begin{gathered}
\frac{\mathrm{E}_{t}\left[R_{t}^{t+\tau}\right]-R_{1_{\rho} t}^{t+\tau}}{\sqrt{\operatorname{Var}_{t}\left[R_{t}^{t+\tau}\right]}}=-R_{1_{p t} t}^{t+\tau} \operatorname{Corrr}_{t}\left[M_{p t}^{t+\tau}, R_{t}^{t+\tau}\right] \sqrt{\operatorname{Var}_{t}\left[M_{p t}^{t+\tau}\right]} \\
\Longrightarrow \frac{R_{t}^{1+\tau} \text { if a risk-free asset exists }}{} \begin{array}{l}
\mathrm{E}_{t}\left[R_{t}^{t+\tau}\right]-R_{1_{\rho} t}^{t+\tau} \\
\sqrt{\operatorname{Var}_{t}\left[R_{t}^{t+\tau}\right]}
\end{array} R_{1_{\rho t} t+\tau} \sqrt{\operatorname{Var}_{t}\left[M_{p t}^{t+\tau}\right]} \leq R_{1_{\rho} t}^{t+\tau} \sqrt{\operatorname{Var}_{t}\left[M_{t+1}\right]} \\
\text { since } M_{t}^{t+\tau}=M_{p t}^{t+\tau}+M_{p_{\perp} t}^{t+\tau}
\end{gathered}
$$

## Mean-Variance Efficient Frontier I

- $H_{t} \ldots H_{t+\tau-1}$ self-financing portfolio
- portfolio payoff $P_{H t+\tau}+D_{H t+\tau}$ is mean-variance efficient $q_{t}$ to $t+\tau$ if

$$
\left.\begin{array}{rl}
P_{H}\left(q_{t}\right) & =P_{H^{\prime}}\left(q_{t}\right) \\
\mathrm{E}\left[P_{H t+\tau}+D_{H t+\tau} \mid q_{t}\right] & =\mathrm{E}\left[P_{H^{\prime} t+\tau}+D_{H^{\prime} t+\tau} \mid q_{t}\right]
\end{array}\right\} \Longrightarrow \quad \begin{aligned}
\operatorname{Var}\left[P_{H t+\tau}+D_{H t+\tau} \mid q_{t}\right] \\
\leq \operatorname{Var}\left[P_{H^{\prime} t+\tau}+D_{H^{\prime} t+\tau} \mid q_{t}\right]
\end{aligned}
$$

## Mean-Variance Efficient Frontier II

- Suppose $H$ is mean-variance efficient. Suppose $H^{\prime}$ satisfies conditions on the previous slide. Then:

$$
\begin{aligned}
\mathrm{E}\left[R_{H^{\prime} t}^{t+\tau} \mid q_{t}\right] & =\mathrm{E}\left[\left.\frac{P_{H^{\prime} t+\tau}+D_{H^{\prime} t+\tau}}{P_{H^{\prime}}\left(q_{t}\right)} \right\rvert\, q_{t}\right]=\mathrm{E}\left[\left.\frac{P_{H t+\tau}+D_{H t+\tau}}{P_{H}\left(q_{t}\right)} \right\rvert\, q_{t}\right]=\mathrm{E}\left[R_{H t}^{t+\tau} \mid q_{t}\right] \\
\text { and } \operatorname{Var}\left[R_{H t}^{+t \tau} \mid q_{t}\right] & =\operatorname{Var}\left[\left.\frac{P_{H t+\tau}+D_{H t+\tau}}{P_{H}\left(q_{t}\right)} \right\rvert\, q_{t}\right] \leq \operatorname{Var}\left[\left.\frac{P_{H^{\prime} t+\tau}+D_{H^{\prime} t+\tau}}{P_{H^{\prime}}\left(q_{t}\right)} \right\rvert\, q_{t}\right]=\operatorname{Var}\left[R_{H^{\prime} t}^{t+\tau} \mid q_{t}\right]
\end{aligned}
$$

- we have:
mean-variance efficiency in payoffs $\Leftrightarrow$ mean-variance efficiency in returns


## Portfolios of the Discount Factor and the Unity Payoff I

- Consider the market of all self-financing portfolios between $q_{t}$ and $t+\tau$
- Define

$$
F_{q_{t}}^{t+\tau}=\left\{Y: Y=a M_{p t}^{t+\tau}+b 1_{p t}^{t+\tau} \text { for some } a, b \in \mathbb{R}\right\}
$$

- Consider an arbitrary traded payoff $Y$. Projecting $Y$ on $F$ :

$$
Y=Y_{F}+Y_{F_{\perp}}
$$

## Portfolios of the Discount Factor and the Unity Payoff II

- some properties of $Y$ :

1. $E_{t}[Y]=E_{t}\left[Y_{F}\right]$
$\longleftarrow \quad \mathrm{E}_{t}\left[Y_{F_{\perp}}\right]=\stackrel{=0}{\stackrel{\mathrm{E}_{t}\left[Y_{F_{\perp}} 1_{p_{\perp} t}^{t+\tau}\right]}{ }}+\stackrel{\stackrel{\mathrm{E}_{t}\left[Y_{F_{\perp}} 1_{p t}^{t+\tau}\right]}{ }}{\longleftarrow}=0$
2. $\operatorname{Cov}_{t}\left[Y_{F}, Y_{F_{\perp}}\right]=0$
$\longleftarrow \operatorname{Cov}_{t}\left[Y_{F}, Y_{F_{\perp}}\right]=\underbrace{E_{t}\left[Y_{F} Y_{F_{\perp}}\right]}_{=0}-E_{t}\left[Y_{F}\right] \underbrace{E_{t}\left[Y_{F_{\perp}}\right]}_{=0}=0$
3. $\quad Y_{F_{\perp}} \neq 0 \Longrightarrow \operatorname{Var}_{t}\left[Y_{F_{\perp}}\right]>0$
$\longleftarrow \quad \operatorname{Var}_{t}\left[Y_{F_{\perp}}\right]=\mathrm{E}_{t}\left[Y_{F_{\perp}}^{2}\right]>0 \quad$ if $Y_{F_{\perp}} \neq 0$
4. $\quad P_{Y t}=P_{Y_{F} t}$
$\longleftarrow \quad P_{Y t}=\mathrm{E}_{t}\left[M_{p t}^{t+\tau}\left(Y_{F}+Y_{F_{\perp}}\right)\right]=\mathrm{E}_{t}\left[M_{p t}^{t+\tau} Y_{F}\right]=P_{Y_{F} t}$

- corresponding decomposition for returns:

$$
R_{Y t}^{t+\tau}=\frac{Y}{P_{Y t}}=\frac{Y_{F}+Y_{F_{\perp}}}{P_{Y t}}=\frac{Y_{F}}{P_{Y_{F} t}}+\frac{Y_{F_{\perp}}}{R_{Y_{F} t+1}}
$$

## Portfolios of the Discount Factor and the Unity Payoff III

- All payoff in $F$ are mean variance efficient.

Proof. Choose an arbitrary traded payoff $Y$. Then we can decompose $Y$ as on the previous slide. Since $P_{Y}=P_{Y_{F}}$ and since $Y_{F_{\perp}}$ only adds noise, $Y$ cannot be mean-variance efficient if $Y_{F_{\perp}} \neq 0$

## Portfolios of the Discount Factor and the Unity Payoff IV

- All payoff in $E_{q_{t}}$ are mean variance efficient.

Proof.Choose $Y \in F$. There exist a m-v efficient traded payoff $Y^{\prime}$ such that

$$
P_{Y t}=P_{Y^{\prime} t} \quad \text { and } \quad \mathrm{E}_{t}[Y]=\mathrm{E}_{t}\left[Y^{\prime}\right]
$$

By the argument above $Y^{\prime}$ is in $F$. Hence $Y-Y^{\prime} \in F$. But $Y-Y^{\prime}$ is also orthogonal to $F$ :

$$
\begin{aligned}
\mathrm{E}_{t}\left[\left(Y-Y^{\prime}\right) 1_{p t}^{t+\tau}\right]+\mathrm{E}_{t}\left[\left(Y-Y^{\prime}\right) 1_{p_{\perp} t}^{t+\tau}\right] & =\mathrm{E}_{t}\left[Y-Y^{\prime}\right]=0 \\
\mathrm{E}_{t}\left[M_{p t}^{t+\tau}\left(Y-Y^{\prime}\right)\right] & =P_{Y_{t}}-P_{Y^{\prime} t}
\end{aligned}=0
$$

Therefore, since $Y-Y^{\prime} \in F$ and $Y-Y^{\prime} \notin F, Y-Y^{\prime}=0$.

- Hence we have for any market between $q_{t}$ and $t+\tau$ :
$Y$ is mean-variance efficient $\quad \Longleftrightarrow \quad Y \in F_{q_{t}}^{t+\tau}$


## 2 M-V Efficient Portfolios $\longrightarrow$ M-V Frontier

- any mean-variance efficient return is given by

$$
R_{h t}^{t+\tau}=h R_{M t}^{t+\tau}+(1-h) R_{1 t}^{t+\tau}=R_{1 t}^{t+\tau}+h\left(R_{M t}^{t+\tau}-R_{1 t}^{t+\tau}\right)
$$

## Minimum-Variance Portfolio

- variance of the return on the previous slide:
$\operatorname{Var}_{t}\left[R_{h t}^{t+\tau}\right]=\operatorname{Var}_{t}\left[R_{1 t}^{t+\tau}\right]+h^{2} \operatorname{Var}_{t}\left[R_{M t}^{t+\tau}-R_{1 t}^{t+\tau}\right]+2 h \operatorname{Cov}_{t}\left[R_{1 t}^{t+\tau}, R_{M t}^{t+\tau}-R_{1 t}^{t+\tau}\right]$
- minimum of the variance:

$$
\frac{\partial \operatorname{Var}_{t}\left[R_{h t}^{t+\tau}\right]}{\partial h}=0 \quad \Longrightarrow \quad h=-\frac{\operatorname{Cov}_{t}\left[R_{1 t}^{t+\tau}, R_{M t}^{t+\tau}-R_{1 t}^{t+\tau}\right]}{\operatorname{Var}_{t}\left[R_{M t}^{t+\tau}-R_{1 t}^{t+\tau}\right]}
$$

If a risk-free asset is traded, then $h=0$ and $R_{h t}^{t+\tau}=R_{f t}^{t+\tau}$.

## Zero-Covariance Portfolio

- Covariance between two mean-variance efficient returns $R_{h_{1}}$ and $R_{h_{2}}$ :

$$
\begin{aligned}
\operatorname{Cov}_{t}\left[R_{h_{1} t}^{t+\tau}, R_{h_{2} t}^{t+\tau}\right]= & \operatorname{Var}_{t}\left[R_{1 t}^{t+\tau}\right]+h_{1} h_{2} \operatorname{Var}_{t}\left[R_{M t}^{t+\tau}-R_{1 t}^{t+\tau}\right] \\
& +\left(h_{1}+h_{2}\right) \operatorname{Cov}_{t}\left[R_{1 t}^{t+\tau}, R_{M t}^{t+\tau}-R_{1 t}^{t+\tau}\right]
\end{aligned}
$$

- hence: $\operatorname{Cov}_{t}\left[R_{h_{1} t}^{t+\tau}, R_{h_{2} t}^{t+\tau}\right]=0$


$$
h_{2}=-\frac{\operatorname{Var}_{t}\left[R_{1 t}^{t+\tau}\right]+h_{1} \operatorname{Cov}_{t}\left[R_{1 t}^{t+\tau}, R_{M t}^{t+\tau}-R_{1 t}^{t+\tau}\right]}{h_{1} \operatorname{Var}_{t}\left[R_{M t}^{t+\tau}-R_{1 t}^{t+\tau}\right]+\operatorname{Cov}_{t}\left[R_{1 t}^{t+\tau}, R_{M t}^{t+\tau}-R_{1 t}^{t+\tau}\right]}
$$

## M-V Efficiency and Beta Representation

- Choose any traded return $R_{t}^{t+\tau}$ :

$$
R_{t}^{t+\tau}=\prod_{R_{F t}^{t+\tau}+z_{F_{\perp}}}^{R_{h_{1} t}^{t+\tau}+\beta_{t}\left(R_{h_{2} t}^{t+\tau}-R_{h_{1} t}^{t+\tau}\right)}
$$

$\Longrightarrow\left\{\begin{aligned} \mathrm{E}_{t}\left[R_{t}^{t+\tau}\right] & =\mathrm{E}_{t}\left[R_{h_{1} t}^{t+\tau}\right]+\beta_{t}\left(\mathrm{E}_{t}\left[R_{h_{2} t}^{t+\tau}\right]-\mathrm{E}_{t}\left[R_{h_{1} t}^{t+\tau}\right]\right) \\ \operatorname{Cov}_{t}\left[R_{t}^{t+\tau}, R_{h_{2} t}^{t+\tau}\right] & =\beta_{t} \operatorname{Var}_{t}\left[R_{h_{2} t}^{t+\tau}\right] \Longrightarrow \beta_{t}=\frac{\operatorname{Cov}_{t}\left[R_{t}^{t+\tau}, R_{h_{2} t}^{t+\tau}\right]}{\operatorname{Var}_{t}\left[R_{h_{2} t}^{t+\tau}\right]}\end{aligned}\right.$

- hence:

$$
\mathrm{E}_{t}\left[R_{t}^{t+\tau}\right]=\mathrm{E}_{t}\left[R_{h_{1} t}^{t+\tau}\right]+\frac{\operatorname{Cov}_{t}\left[R_{t}^{t+\tau}, R_{h_{2} t}^{t+\tau}\right]}{\operatorname{Var}_{t}\left[R_{h_{2} t}^{t+\tau}\right]}\left(\mathrm{E}_{t}\left[R_{h_{2} t}^{t+\tau}\right]-\mathrm{E}_{t}\left[R_{h_{1} t}^{t+\tau}\right]\right)
$$

zero-covariance portfolio, $=R_{f t+1}$ if risk-free asset exists

## Market Portfolio M-V Efficient $\Longrightarrow$ CAPM

- Suppose a risk-free asset exists and suppose the market portfolio is mean-variance efficient. Then we have:

$$
\mathrm{E}_{t}\left[R_{t}^{t+\tau}\right]=R_{f t}^{t+\tau}+\frac{\operatorname{Cov}_{t}\left[R_{t}^{t+\tau}, R_{m t}^{t+\tau}\right]}{\operatorname{Var}_{t}\left[R_{m t}^{t+\tau}\right]}\left(\mathrm{E}_{t}\left[R_{m t}^{t+\tau}\right]-R_{f t}^{t+\tau}\right)
$$

This model of expected returns is known as the capital asset pricing model (CAPM).

## Mean-Variance Efficient Returns $\longrightarrow$ Discount Factor

- Suppose $R_{h_{1} t}^{t+\tau}$ and $R_{h_{2} t}^{t+\tau}$ are mean-variance efficient
- suppose $\operatorname{Cov}_{t}\left[R_{h_{1} t}^{t+\tau}, R_{h_{2} t}^{t+\tau}\right]=0$
- Then:

$$
M_{t}^{t+\tau}=\frac{1}{\mathrm{E}_{t}\left[R_{h_{1} t}^{t+\tau}\right]}-\left(R_{h_{2} t}^{t+\tau}-\mathrm{E}_{t}\left[R_{h_{2} t}^{t+\tau}\right]\right) \frac{\mathrm{E}_{t}\left[R_{h_{2} t}^{t+\tau}\right]-\mathrm{E}_{t}\left[R_{h_{1} t}^{t+\tau}\right]}{\mathrm{E}_{t}\left[R_{h_{1} t}^{t+\tau}\right] \operatorname{Var}_{t}\left[R_{h_{2} t}^{t+\tau}\right]}
$$

- Proof:

$$
\begin{aligned}
&\left.\begin{array}{rl}
\text { any return } \\
\mathrm{E}_{t}\left[M_{t}^{t+\tau} \overline{R_{t}^{t+\tau}}\right] & =\frac{\mathrm{E}_{t}\left[R_{t}^{t+\tau}\right]}{\mathrm{E}_{t}\left[R_{h_{1} t}^{+\tau \tau}\right]}-\left(\overline{\left.\mathrm{E}_{t}\left[R_{t}^{t+\tau} R_{h_{2} t}^{t+\tau}\right]-R_{t}^{t+\tau}, R_{h_{2} t}^{t+\tau}\right]}\left[R_{t}^{t+\tau}\right] \mathrm{E}_{t}\left[R_{h_{2} t}^{t+\tau}\right]\right.
\end{array}\right) \frac{\mathrm{E}_{t}\left[R_{h_{2} t}^{t+\tau}\right]-\mathrm{E}_{t}\left[R_{h_{1}}^{t+\tau}\right]}{\mathrm{E}_{t}\left[R_{h_{1} t}^{t+\tau}\right] \operatorname{Var}_{t}\left[R_{h_{2} t}^{t+\tau}\right]} \\
&=1
\end{aligned}
$$

## CAPM $\longrightarrow$ Discount Factor

- For example, if the CAPM holds:

$$
M_{t}^{t+\tau}=\frac{1}{R_{f t}^{t+\tau}}-\left(R_{m t}^{t+\tau}-R_{f t}^{t+\tau}\right) \frac{\mathrm{E}_{t}\left[R_{m t}^{t+\tau}\right]-R_{f t}^{t+\tau}}{R_{f t}^{t+\tau} \operatorname{Var}_{t}\left[R_{m t}^{t+\tau}\right]}
$$

## Maximizing Sharpe Ratio

- Sharpe ratio of a portfolio $H$ :

$$
\frac{\mathrm{E}_{t}\left[R_{H t+1}\right]-R_{f t+1}}{\mathrm{SD}_{t}\left[R_{H t+1}\right]}=\frac{\sum_{a=1}^{A} \stackrel{\text { since: } \sum h_{a}=1}{\sqrt{\sum_{a}\left(\mathrm{E}_{t}\left[R_{a t+1}\right]-R_{f t+1}\right)}}}{\sqrt{\sum_{a=1}^{A} \sum_{b=1}^{A} h_{a} h_{b} \operatorname{Cov}\left[R_{a t+1}, R_{b t+1}\right]}}
$$

- Derivative:
$\frac{\partial \text { (Sharpe ratio) }}{\partial h_{a}}$

$$
\operatorname{Cov}_{t}\left[R_{a t+1}, \sum_{b}^{R_{H t+1}} h_{b} R_{b t+1}\right]
$$

$\left(\mathrm{E}_{t}\left[R_{a t+1}\right]-R_{f t+1}\right) \mathrm{SD}_{t}\left[R_{H t+1}\right]-\left(\mathrm{E}\left[R_{H t+1}\right]-R_{f t+1}\right) \frac{1}{2} \operatorname{Var}\left[R_{H t+1}\right]^{-\frac{1}{2}} 2 \sum_{b} h_{b} \operatorname{Cov}_{t}\left[R_{a t+1}, R_{b t+1}\right.$.
$\operatorname{Var}_{t}\left[R_{H t+1}\right]$
$=\frac{\mathrm{E}_{t}\left[R_{a t+1}\right]-R_{f t+1}-\left(\mathrm{E}_{t}\left[R_{H t+1}\right]-R_{f t+1}\right) \operatorname{Var}_{t}\left[R_{H t+1}\right]^{-1} \operatorname{Cov}_{t}\left[R_{a t+1}, R_{H t+1}\right]}{\operatorname{Var}_{t}\left[R_{H t+1}\right]^{\frac{1}{2}}}$

